Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Food Res Int ; 178: 113956, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38309876

RESUMEN

This study aimed to determine the nutritional components (macronutrients ans minerals) and α-amylase inhibition capacity of freeze-dried grumixama (Eugenia brasiliensis Lam) seeds (S) and pulp/peel (P) portions, at ripe and mid-ripe stages. In vitro digestion was also performed on S and P from grumixama to assess the bioaccessibility of total phenolic compound (TPC), flavonoids (TFC), and anthocyanins (TAC), as well as to examine their impact on antioxidant activity (DPPH, ABTS, FRAP). The ripening process impacts the bioactive compounds and individual phenolics of S and P portions. The ripe S was source of myricetin and exhibited higher antioxidant activity, while mid-ripe S was high in flavonoids and cinnamic acid with higher antiglycemic potential. Ripe P showed higher soluble fiber, carbohydrate, TAC, and caffeic acid content, whereas mid-ripe P had increased mineral content (calcium, potassium, manganese), catechin, and TPC. After in vitro digestion, the P portion showed a bioaccessibility of total phenolic content (TPC) and total flavonoid content (TFC) exceeding 40% at intestinal phase. In contrast, the S portions had better release of TPC and TFC and antioxidant activity at gastric phase. Considering the outstanding nutritional and biological properties of grumixama fruit, freeze-dried S and P portions from both ripening stages possess could be explored as valuable sources of nutrients and antioxidant compounds.


Asunto(s)
Antioxidantes , Eugenia , Antioxidantes/análisis , Antocianinas/análisis , Frutas/química , Flavonoides/análisis , Fenoles/análisis , Minerales/análisis
2.
Plant Foods Hum Nutr ; 79(1): 59-65, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37971652

RESUMEN

Gabirobeira fruits are known for their rich nutrient content and bioactive phytochemical compounds that contribute to significant biological activities. Despite these attributes, the antioxidant potential and stability of phenolic compounds in gabiroba by-products after digestion have yet to be studied. The objective of this work was to evaluate the physical-chemical composition, antibacterial activity, α-amylase, and α-glucosidase inhibitory effects, as well as the in vitro digestibility of total phenolic compounds, total flavonoids, and antioxidant activity of powder and extract from gabiroba to valorize these byproducts. The gabiroba powder had low moisture, high carbohydrate and fiber content. The extraction using 80% ethanol demonstrated higher antioxidant, antibacterial, α-amylase, and α-glucosidase inhibition activities compared to the 12% ethanol and water extracts. Catechin and ferulic acid were the major phenolic compounds identified by HPLC-DAD. After digestion, both the powder and the gabiroba extract exhibited a bioaccessibility of more than 30% for total phenolic compounds and antioxidant activity during the gastric phase. However, the dry ethanol extract displayed higher total phenolic compounds after both the gastric and intestinal phases compared to the flour. Processing gabiroba into powder and extract is a promising approach to fully utilize this seasonal fruit, minimize waste, concentrate health-beneficial compounds, and valorize a by-product for use as a functional ingredient and raw material within the food and pharmaceutical industries.


Asunto(s)
Antioxidantes , Myrtaceae , Antioxidantes/análisis , Frutas/química , alfa-Glucosidasas , Polvos/análisis , Fenoles/análisis , Extractos Vegetales/química , Etanol , alfa-Amilasas , Antibacterianos/análisis , Digestión
3.
Front Cell Dev Biol ; 11: 1273641, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928898

RESUMEN

Introduction: Maternal diabetes during pregnancy is well known to be associated with a higher risk for structural birth defects in the offspring. Recent searches for underlying mechanisms have largely focused on aberrant processes in the embryo itself, although prior research in rodent models implicated dysfunction also of the visceral yolk sac. The objective of our research was to investigate both tissues within the conceptus simultaneously. Methods: We conducted unbiased transcriptome profiling by RNA sequencing on pairs of individual yolk sacs and their cognate embryos, using the non-obese diabetic (NOD) mouse model. The analysis was performed at gestational day 8.5 on morphologically normal specimen to circumvent confounding by defective development. Results: Even with large sample numbers (n = 33 in each group), we observed considerable variability of gene expression, primarily driven by exposure to maternal diabetes, and secondarily by developmental stage of the embryo. Only a moderate number of genes changed expression in the yolk sac, while in the embryo, the exposure distinctly influenced the relationship of gene expression levels to developmental progression, revealing a possible role for altered cell cycle regulation in the response. Also affected in embryos under diabetic conditions were genes involved in cholesterol biosynthesis and NAD metabolism pathways. Discussion: Exposure to maternal diabetes during gastrulation changes transcriptomic profiles in embryos to a substantially greater effect than in the corresponding yolk sacs, indicating that despite yolk sac being of embryonic origin, different mechanisms control transcriptional activity in these tissues. The effects of maternal diabetes on expression of many genes that are correlated with developmental progression (i.e. somite stage) highlight the importance of considering developmental maturity in the interpretation of transcriptomic data. Our analyses identified cholesterol biosynthesis and NAD metabolism as novel pathways not previously implicated in diabetic pregnancies. Both NAD and cholesterol availability affect a wide variety of cellular signaling processes, and can be modulated by diet, implying that prevention of adverse outcomes from diabetic pregnancies may require broad interventions, particularly in the early stages of pregnancy.

4.
Med Res Arch ; 11(6)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37885852

RESUMEN

CRISPR-mediated genome editing in vivo can be accompanied by prolonged stability of the Cas9 protein in mouse embryos. Then, genome edited variant alleles will be induced as long as Cas9 protein is active, and unmodified wildtype target loci are available. The corollary is that CRISPR-modified alleles that arise after the first zygotic cell division potentially could be distributed asymmetrically to the cell lineages that are specified early during morula and blastocyst development. This has practical implications for the investigation of F0 generation individuals, as cells in embryonic and extraembryonic tissues, such as the visceral yolk sac, might end up inheriting different genotypes. We here investigated the hypothetically possible scenarios by genotyping individual F0 CRISPants and their associated visceral yolk sacs in parallel. In all cases, we found that embryonic genotype was accurately reflected by yolk sac genotyping, with the two tissues indicating genetic congruence, even when the conceptus was a mosaic of cells with distinct allele configurations. Nevertheless, low abundance of a variant allele may represent a private mutation occurring only in the yolk sac, and in those rare cases, additional genotyping to determine the mutational status of the embryo proper is warranted.

5.
Sci Total Environ ; 876: 162781, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36906011

RESUMEN

Arbuscular mycorrhizal fungi were recovered from soil samples from the naturally radioactive soil at the long-abandoned South Terras uranium mine in Cornwall, UK. Species of Rhizophagus, Claroideoglomus, Paraglomus, Septoglomus, and Ambispora were recovered, and pot cultures from all except Ambispora were established. Cultures were identified to species level using morphological observation and rRNA gene sequencing combined with phylogenetic analysis. These cultures were used in pot experiments designed with a compartmentalised system to assess the contribution of fungal hyphae to the accumulation of essential elements, such as copper and zinc, and non-essential elements, such as lead, arsenic, thorium, and uranium into root and shoot tissues of Plantago lanceolata. The results indicated that none of the treatments had any positive or negative impact on shoot and root biomass. However, Rhizophagus irregularis treatments showed higher accumulation of copper and zinc in shoots, while R. irregularis and Septoglomus constrictum enhanced arsenic accumulation in roots. Moreover, R. irregularis increased uranium concentration in roots and shoots of the P. lanceolata plant. This study provides useful insight into fungal-plant interactions that determine metal and radionuclide transfer from soil into the biosphere at contaminated sites such as mine workings.


Asunto(s)
Arsénico , Glomeromycota , Micorrizas , Contaminantes del Suelo , Uranio , Micorrizas/química , Uranio/análisis , Raíces de Plantas/microbiología , Cobre/análisis , Arsénico/análisis , Suelo , Filogenia , Contaminantes del Suelo/análisis , Plantas , Zinc/análisis
6.
Plant Foods Hum Nutr ; 78(1): 124-131, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36357658

RESUMEN

Red cabbage is rich in phytochemical compounds, and its consumption, either raw or cooked, has been linked to the prevention of several diseases. This work aimed to investigate the influence of cooking methods on in vitro bioaccessibility of phenolics and antioxidant activity of red cabbage. The vegetable was subjected to boiling, steaming, and microwaving for different times to evaluate color parameters, total phenolic (TPC), total flavonoid (TFC), anthocyanin content (AC), and antioxidant activity (FRAP, DPPH, and ABTS). The phytochemical bioaccessibility before and after cooking was also evaluated by in vitro simulated digestion. Steaming showed the most significant retention of the compounds after 20 and 25 min of cooking (72-86% for TPC, 72-77% for TFC, 75-79% for FRAP, 84-91% for DPPH, 70-83% for ABTS), followed by microwaving, which was more stable in 10 min. Microwaving decreased TFC and AC over time. Boiling did not show significant differences between the cooking times and showed more than 50% of losses of TPC, TFC, and AC and 30 to 60% of antioxidant activity. Steaming was the best cooking method, showing the most significant tendency to black coloration (< L*). In 10 min, it still showed the highest percentages of increase in TPC and the minor losses of TFC and AC in the gastric and intestinal phases. Steaming also increased the antioxidant after digestion when compared to uncooked red cabbage. These results are important to help consumers choose the most effective cooking method for red cabbage to retain its health-promoting components.


Asunto(s)
Antioxidantes , Brassica , Antioxidantes/análisis , Flavonoides/análisis , Brassica/química , Fenoles/análisis , Antocianinas/análisis , Culinaria/métodos , Fitoquímicos
7.
Foods ; 13(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38201151

RESUMEN

Gabiroba, a native fruit in Brazil's Atlantic Forest region, has significant nutritional and therapeutic properties. However, due to its seasonality, consumption by the population is limited. Thus, the development of gabiroba byproducts would add significant value to the food and therapeutic industries. Therefore, it is essential to study and support the lack of toxicity of gabiroba fruit extracts. In the present study, physicochemical analyses of fresh fruits (GF) and dehydrated whole gabiroba flour (WGF) and preliminary toxicity analyses of WGF were performed. The toxicity results showed a microcrustacean LC50 of >1000 mg/mL when exposed to WGF extracts at various concentrations (10-1000 µg/mL; p = 0.062) using the Artemia salina method, with no evidence observed of proliferative activity or toxic metabolic compounds in the WGF extract. The phytotoxicity of WGF using Lactuca sativa L. allowed germination and root growth at various concentrations of WGF extract, with the lowest (100 µg/mL) and highest (1000 µg/mL) concentrations exhibiting 98.3% and 100% seed germination, respectively. In conclusion, these results indicate that the WGF preparation preserved the nutritional and antioxidant potential of gabiroba fruits and that WGF is safe for use as a raw material in the food industry and for therapeutic purposes.

8.
Foods ; 11(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36496669

RESUMEN

The application of ß-galactosidase in the fermentation of milk enables the acquirement of lower levels of lactose that are tolerated by lactose maldigesters and can reduce the nutritional consequences of avoiding dairy products. The present study evaluated the viability of the fortification of lactose-free prebiotic Greek yogurt formulas with whey protein concentrate (WPC). Two rotational central composite designs (RCCDs) were applied: one to perform the hydrolysis of the whey protein concentrate and another for the yogurt formulations (α = 2 with 2 central points and 4 axial points). Two ß-galactosidase enzymes obtained from Kluyveromyces lactis were used. The content of lactose, glucose, galactose, and lactic acid were determined in the WPC, milk (pasteurized and powdered), and yogurts. The three best formulations regarding the attributes' viscosity, syneresis, firmness, and elasticity were sensorially evaluated by using a nine-point hedonic scale. A microbiological analysis was performed after 48 h of yogurt production. The characterization of the products and the comparison of the results obtained were evaluated using the Student's T test and the analysis of variance with Tukey's test (p-values < 0.05). The application of a lactose-free WPC promoted viscosity, firmness, and elasticity. The syneresis was reduced, and whey increased the protein and calcium content. Lactose-free WPC can be used as a partial substitute for skimmed powdered milk in yogurts. The obtained results are encouraging with respect to the production of lactose-free Greek yogurts by the dairy industry.

9.
J Ethnopharmacol ; 298: 115544, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35963420

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Okra (Abelmoschus esculentus (L.) Moench) is traditionally used by different populations of Africa, América, Asia, and Europa to control diabetes. Although its action has been evaluated in several preclinical rodent trials, they have not been systematically analyzed. OBJECTIVE: To evaluate the effectiveness of using okra in the treatment of diabetes in experimental rodent models. MATERIAL AND METHODS: Controlled and randomized rodent animal trials with induced diabetes published between January 2000 and January 2021 were searched in the PubMed, Scopus, Scielo, and Web of Science databases. The search strategy included studies comprising the descriptors: animal species, diabetes induction method, intervention time, part of okra fruit used (whole, seeds, or peels), and dose as well as observed effects on biochemical and metabolic parameters. The systematic review was carried out according to the PRISMA statement, Cochrane bias risk tool (SYRCLE's RoB tool), and registered for systematic review protocols (PROSPERO). RESULTS: A total of 326 articles were identified and after the exclusion of studies with gestational animal models, non-rodent animals, and non-diabetic animals, 11 studies involving 388 rodents were selected for the synthesis of results. The diabetes induction methods included streptozotocin, streptozotocin-nicotinamide, alloxan monohydrate, insulin resistance by high-fat diets or formulation described in AIN - 76, and feeding with high-fat food. Both Wistar albino rats, Sprague-Dawley males, and rats of both sexes of the Long-Evans lineage as well as male albino mice and C57BL females were included in the experiments. Studies showed that extracts of the fruit, the fresh fruit, or its various fractions had positive effects on the following markers: glycated hemoglobin, cholesterol, HOMA-IR, oral glucose tolerance test, and blood glucose, in acute (2 and 24 h), and chronic (up to 4 months) treatment. CONCLUSION: An important hypoglycemic effect of okra in its various fractions on induced diabetes was observed by different authors. Moreover, okra promoted improvement in metabolic markers such as insulin sensitivity, lipid profile, and bodyweight loss.


Asunto(s)
Abelmoschus , Diabetes Mellitus , Animales , Glucemia , Diabetes Mellitus/tratamiento farmacológico , Masculino , Ratones , Modelos Animales , Extractos Vegetales/farmacología , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Ratas Wistar , Estreptozocina
10.
Front Cell Dev Biol ; 10: 777844, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35478964

RESUMEN

Maternal diabetes in early pregnancy increases the risk for birth defects in the offspring, particularly heart, and neural tube defects. While elevated glucose levels are characteristic for diabetic pregnancies, these are also accompanied by hyperlipidemia, indicating altered nutrient availability. We therefore investigated whether changes in the expression of nutrient transporters at the conception site or in the early post-implantation embryo could account for increased birth defect incidence at later developmental stages. Focusing on glucose and fatty acid transporters, we measured their expression by RT-PCR in the spontaneously diabetic non-obese mouse strain NOD, and in pregnant FVB/N mouse strain dams with Streptozotocin-induced diabetes. Sites of expression in the deciduum, extra-embryonic, and embryonic tissues were determined by RNAscope in situ hybridization. While maternal diabetes had no apparent effects on levels or cellular profiles of expression, we detected striking cell-type specificity of particular nutrient transporters. For examples, Slc2a2/Glut2 expression was restricted to the endodermal cells of the visceral yolk sac, while Slc2a1/Glut1 expression was limited to the mesodermal compartment; Slc27a4/Fatp4 and Slc27a3/Fatp3 also exhibited reciprocally exclusive expression in the endodermal and mesodermal compartments of the yolk sac, respectively. These findings not only highlight the significance of nutrient transporters in the intrauterine environment, but also raise important implications for the etiology of birth defects in diabetic pregnancies, and for strategies aimed at reducing birth defects risk by nutrient supplementation.

12.
JCI Insight ; 7(7)2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35230975

RESUMEN

The importance of healthy mitochondrial function is implicated in the prevention of chronic kidney disease (CKD) and diabetic kidney disease (DKD). Sex differences also play important roles in DKD. Our previous studies revealed that mitochondrial substrate overload (modeled by homozygous deletion of carnitine acetyl-transferase [CrAT]) in proximal tubules causes renal injury. Here, we demonstrate the importance of intact mitochondrial substrate efflux by titrating the amount of overload through the generation of a heterozygous CrAT-KO model (PT-CrATHET mouse). Intriguingly, these animals developed renal injury similarly to their homozygous counterparts. Mitochondria were structurally and functionally impaired in both sexes. Transcriptomic analyses, however, revealed striking sex differences. Male mice shut down fatty acid oxidation and several other metabolism-related pathways. Female mice had a significantly weaker transcriptional response in metabolism, but activation of inflammatory pathways was prominent. Proximal tubular cells from PT-CrATHET mice of both sexes exhibited a shift toward a more glycolytic phenotype, but female mice were still able to oxidize fatty acid-based substrates. Our results demonstrate that maintaining mitochondrial substrate metabolism balance is crucial to satisfying proximal tubular energy demand. Our findings have potentially broad implications, as both the glycolytic shift and the sexual dimorphisms discovered herein offer potentially new modalities for future interventions for treating kidney disease.


Asunto(s)
Nefropatías Diabéticas , Mitocondrias , Animales , Nefropatías Diabéticas/metabolismo , Ácidos Grasos/metabolismo , Femenino , Homocigoto , Masculino , Ratones , Mitocondrias/metabolismo , Eliminación de Secuencia
13.
Genes (Basel) ; 13(1)2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35052470

RESUMEN

Adverse exposures during pregnancy have been shown to contribute to susceptibility for chronic diseases in offspring. Maternal diabetes during pregnancy is associated with higher risk of pregnancy complications, structural birth defects, and cardiometabolic health impairments later in life. We showed previously in a mouse model that the placenta is smaller in diabetic pregnancies, with reduced size of the junctional zone and labyrinth. In addition, cell migration is impaired, resulting in ectopic accumulation of spongiotrophoblasts within the labyrinth. The present study had the goal to identify the mechanisms underlying the growth defects and trophoblast migration abnormalities. Based upon gene expression assays of 47 candidate genes, we were able to attribute the reduced growth of diabetic placenta to alterations in the Insulin growth factor and Serotonin signaling pathways, and provide evidence for Prostaglandin signaling deficiencies as the possible cause for abnormal trophoblast migration. Furthermore, our results reinforce the notion that the exposure to maternal diabetes has particularly pronounced effects on gene expression at midgestation time points. An implication of these findings is that mechanisms underlying developmental programming act early in pregnancy, during placenta morphogenesis, and before the conceptus switches from histiotrophic to hemotrophic nutrition.


Asunto(s)
Diabetes Mellitus Experimental/fisiopatología , Diabetes Gestacional/fisiopatología , Dieta , Regulación de la Expresión Génica , Fenómenos Fisiologicos Nutricionales Maternos , Placenta/patología , Animales , Femenino , Perfilación de la Expresión Génica , Ratones , Placenta/metabolismo , Embarazo
15.
New Phytol ; 231(1): 490-499, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33780549

RESUMEN

There is no consensus barcoding region for determination of arbuscular mycorrhizal fungal (AMF) taxa. To overcome this obstacle, we have developed an approach to sequence an AMF marker within the ribosome-encoding operon (rDNA) that covers all three widely applied variable molecular markers. Using a nested PCR approach specific to AMF, we amplified a part (c. 2.5 kb) of the rDNA spanning the majority of the small subunit rRNA (SSU) gene, the complete internal transcribed spacer (ITS) region and a part of the large subunit (LSU) rRNA gene. The PCR products were sequenced on the PacBio platform utilizing Single Molecule Real Time (SMRT) sequencing. Employing this method for selected environmental DNA samples, we were able to describe complex AMF communities consisting of various glomeromycotan lineages. We demonstrate the applicability of this new 2.5 kb approach to provide robust phylogenetic assignment of AMF lineages without known sequences from pure cultures and to consolidate information about AMF taxon distributions coming from three widely used barcoding regions into one integrative dataset.


Asunto(s)
Glomeromycota , Micorrizas , ADN de Hongos/genética , ADN Ribosómico/genética , Hongos/genética , Glomeromycota/genética , Micorrizas/genética , Filogenia , Análisis de Secuencia de ADN
16.
Curr Biol ; 31(7): 1570-1577.e4, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33592192

RESUMEN

Arbuscular mycorrhizal fungi (AMF) (subphylum Glomeromycotina)1 are among the most prominent symbionts and form the Arbuscular Mycorrhizal symbiosis (AMS) with over 70% of known land plants.2,3 AMS allows plants to efficiently acquire poorly soluble soil nutrients4 and AMF to receive photosynthetically fixed carbohydrates. This plant-fungus symbiosis dates back more than 400 million years5 and is thought to be one of the key innovations that allowed the colonization of lands by plants.6 Genomic and genetic analyses of diverse plant species started to reveal the molecular mechanisms that allowed the evolution of this symbiosis on the host side, but how and when AMS abilities emerged in AMF remain elusive. Comparative phylogenomics could be used to understand the evolution of AMS.7,8 However, the availability of genome data covering basal AMF phylogenetic nodes (Archaeosporales, Paraglomerales) is presently based on fragmentary protein coding datasets.9Geosiphon pyriformis (Archaeosporales) is the only fungus known to produce endosymbiosis with nitrogen-fixing cyanobacteria (Nostoc punctiforme) presumably representing the ancestral AMF state.10-12 Unlike other AMF, it forms long fungal cells ("bladders") that enclose cyanobacteria. Once in the bladder, the cyanobacteria are photosynthetically active and fix nitrogen, receiving inorganic nutrients and water from the fungus. Arguably, G. pyriformis represents an ideal candidate to investigate the origin of AMS and the emergence of a unique endosymbiosis. Here, we aimed to advance knowledge in these questions by sequencing the genome of G. pyriformis, using a re-discovered isolate.


Asunto(s)
Hongos/genética , Genoma Fúngico , Micorrizas , Plantas , Cianobacterias , Micorrizas/genética , Fijación del Nitrógeno , Filogenia , Plantas/microbiología , Simbiosis/genética
17.
Cells ; 9(12)2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339225

RESUMEN

Cytoplasmic male sterility (CMS), encoded by the interacting mitochondrial and nuclear genes, causes pollen abortion or non-viability. CMS is widely used in agriculture and extensively studied in crops. Much less is known about CMS in wild species. We performed a comparative transcriptomic analysis of male sterile and fertile individuals of Silene vulgaris, a model plant for the study of gynodioecy, to reveal the genes responsible for pollen abortion in this species. We used RNA-seq datasets previously employed for the analysis of mitochondrial and plastid transcriptomes of female and hermaphrodite flower buds, making it possible to compare the transcriptomes derived from three genomes in the same RNA specimen. We assembled de novo transcriptomes for two haplotypes of S. vulgaris and identified differentially expressed genes between the females and hermaphrodites, associated with stress response or pollen development. The gene for alternative oxidase was downregulated in females. The genetic pathways controlling CMS in S. vulgaris are similar to those in crops. The high number of the differentially expressed nuclear genes contrasts with the uniformity of organellar transcriptomes across genders, which suggests these pathways are evolutionarily conserved and that selective mechanisms may shield organellar transcription against changes in the cytoplasmic transcriptome.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Estrés Oxidativo/genética , Infertilidad Vegetal/genética , Polen/genética , Silene/genética , Silene/fisiología , Núcleo Celular/genética , Regulación hacia Abajo/genética , Ontología de Genes , Haplotipos/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Anotación de Secuencia Molecular , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcriptoma/genética
18.
Food Res Int ; 129: 108745, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32036923

RESUMEN

Fruits from Ziziphus joazeiro from Mata Paraibana (MP), Borborema (BB), Agreste (AG) and Sertão Paraibano (SP) were assessed to determine their morphological characteristics, nutritional composition, content and bioaccessibility of phenolic compounds and antioxidant activity. In general, juá fruits presented ovoid shape, high moisture (65.33-72.53%), low acidity, with succinic acid being the predominant organic acid, and high dietary fiber content (8.98-10.81%), mostly insoluble fibers (5.72-8.02%). Fruits from MP presented the highest amounts of free phenolic compounds (24.27 mg/100 g) and the highest antioxidant activity in the DPPH, FRAP and ORAC assays. In MP fruits, epigallocatechin gallate (12.04 mg/100 g) was the major compound, while in fruits from other states, phenolic compounds were the major compounds. The bioaccessibility of catechin, epicatechin, epicatechin gallate, epigallocatechin gallate, procyanidin and syringic acid varied among fruits from different regions. Fruits from SP presented the highest phenolic content in the bioaccessible fraction and highest antioxidant activity in all assays. The findings of this study indicate that juá is a non-acidic fruit with highest moisture, source of fiber, majority insoluble fibers and bioaccessible flavanols.


Asunto(s)
Catequina/análisis , Fibras de la Dieta/análisis , Frutas/química , Extractos Vegetales/análisis , Polifenoles/análisis , Ziziphus/química , Antioxidantes/análisis , Biflavonoides/análisis , Brasil , Catequina/análogos & derivados , Fenómenos Químicos , Valor Nutritivo , Fitoquímicos/análisis , Proantocianidinas/análisis
19.
BMC Plant Biol ; 19(1): 568, 2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31856730

RESUMEN

BACKGROUND: Gynodioecious species exist in two sexes - male-sterile females and hermaphrodites. Male sterility in higher plants often results from mitonuclear interaction between the CMS (cytoplasmic male sterility) gene(s) encoded by mitochondrial genome and by nuclear-encoded restorer genes. Mitochondrial and nuclear-encoded transcriptomes in females and hermaphrodites are intensively studied, but little is known about sex-specific gene expression in plastids. We have compared plastid transcriptomes between females and hermaphrodites in two haplotypes of a gynodioecious species Silene vulgaris with known CMS candidate genes. RESULTS: We generated complete plastid genome sequences from five haplotypes S. vulgaris including the haplotypes KRA and KOV, for which complete mitochondrial genome sequences were already published. We constructed a phylogenetic tree based on plastid sequences of S. vulgaris. Whereas lowland S. vulgaris haplotypes including KRA and KOV clustered together, the accessions from high European mountains diverged early in the phylogram. S. vulgaris belongs among Silene species with slowly evolving plastid genomes, but we still detected 212 substitutions and 112 indels between two accessions of this species. We estimated elevated Ka/Ks in the ndhF gene, which may reflect the adaptation of S. vulgaris to high altitudes, or relaxed selection. We compared depth of coverage and editing rates between female and hermaphrodite plastid transcriptomes and found no significant differences between the two sexes. We identified 51 unique C to U editing sites in the plastid genomes of S. vulgaris, 38 of them in protein coding regions, 2 in introns, and 11 in intergenic regions. The editing site in the psbZ gene was edited only in one of two plastid genomes under study. CONCLUSIONS: We revealed no significant differences between the sexes in plastid transcriptomes of two haplotypes of S. vulgaris. It suggests that gene expression of plastid genes is not affected by CMS in flower buds of S. vulgaris, although both sexes may still differ in plastid gene expression in specific tissues. We revealed the difference between the plastid transcriptomes of two S. vulgaris haplotypes in editing rate and in the coverage of several antisense transcripts. Our results document the variation in plastid genomes and transcriptomes in S. vulgaris.


Asunto(s)
Genoma de Plastidios/genética , Silene/genética , Transcriptoma/genética , Silene/metabolismo
20.
PLoS One ; 14(11): e0224754, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31774824

RESUMEN

Diabetes in the mother during pregnancy is a risk factor for birth defects and perinatal complications and can affect long-term health of the offspring through developmental programming of susceptibility to metabolic disease. We previously showed that Streptozotocin-induced maternal diabetes in mice is associated with altered cell differentiation and with smaller size of the placenta. Placental size and fetal size were affected by maternal diet in this model, and maternal diet also modulated the risk for neural tube defects. In the present study, we sought to determine the extent to which these effects might be mediated through altered expression of nutrient transporters, specifically glucose and fatty acid transporters in the placenta. Our results demonstrate that expression of several transporters is modulated by both maternal diet and maternal diabetes. Diet was revealed as the more prominent determinant of nutrient transporter expression levels, even in pregnancies with uncontrolled diabetes, consistent with the role of diet in placental and fetal growth. Notably, the largest changes in nutrient transporter expression levels were detected around midgestation time points when the placenta is being formed. These findings place the critical time period for susceptibility to diet exposures earlier than previously appreciated, implying that mechanisms underlying developmental programming can act on placenta formation.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Dieta Alta en Grasa/efectos adversos , Proteínas de Transporte de Membrana/metabolismo , Nutrientes/metabolismo , Placenta/patología , Embarazo en Diabéticas/metabolismo , Animales , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/patología , Ácidos Grasos/metabolismo , Femenino , Desarrollo Fetal , Glucosa/metabolismo , Humanos , Ratones , Embarazo , Embarazo en Diabéticas/etiología , Embarazo en Diabéticas/patología , Estreptozocina/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...